AN ACTIVE K-BAND RECEIVE SLOT ARRAY FOR MOBILE SATELLITE COMMUNICATIONS

A. N. Tulintseff, K. A. 1 æ, 1, M.Sukamto, and W.Chew Jet 1 ropulsion 1 aboratory California Institute of Technology Pasadena, CA 91109 USA

ABSTRACT

An active receive slot array has been developed for operation in the downlink frequency band, 19.914-20.064 GHz, of NASA's Advanced Communication Technology Satellite (ACTS) for the ACTS Mobile Terminal (AMT) project. The antenna receives a vertically polarized signal in a fixed angular beam region 46° above the horizon, with an elevation beamwidth at least 12" to compensate for vehicle bitch and vaw, where satellite tracking is obtained by steering the antenna mechanically. The active antenna consists of an array of fourteen linear series fed-type microstrip slot arrays, fourteen 1 Dackaged Monolithic Microwave Integrated Circuit (MMIC) low noise amplifier (LNA) subr1 iodules connected at eacH subarray out] nit, a 14way Wilkinson-type Power divider, and a final additional LNA submodule used as a driver amplifier. Measured G/T at beam peak is 6.4 dB/°K.

Keywords: Active Array, Microstrip, Slots

1. INTRODUCTION

A 20 GHz active receive slot array has been developed for operation in the downlink frequency bar Id of NASA's Advanced Communication Technology Satellite (ACTS) for the ACTS Mobile Terminal (AMT) project. The AMT is to demonstrate voice and data communication between a mobile terminal in Los Allgeles, CA, and a fixed terminal in Cleveland, OH, via the ACTS satellite [1]. Satellite tracking for the land-mobile vehicular antenna system involves "mechanical dithering" of the antenna, where the antenna system radiates a fixed beam 46° above the horizon, receiving vertical polarization and transmitting horizontal polarization at, 20 and 30 GHz, respectively. The active receive array was designed as a light

The research described in this paper was carried on it by the Jet. 1 Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

weight, low profile rugged active antenum, with low-cost, high-volume production potential with easy integration of active integrated circuit components.

The active receive array of perates over the frequency range [9.9] 4-20.064" GHz with a minimum system G/T of -8 dB/°K. The antenna, to be mounted on an 8-inch diameter turntable, receives a vertically polarized signal in a fixed angular beam region 46° above the horizon, with an elevation beamwidth at least 12" to compensate for vehicle pitch and yaw.

The active antenna consists of an array of fourteen 1 inear series fed-type unicrostrip slotarrays, fourteen packaged Monolithic Microwave Integrated Circuit (MMIC) low noise amplifier (LNA) submodules connected at each subarray output, a 14-way Wilkinson-type Power divider, and a final additional LNA submodule used as a driver amplifier. The active receive array was designed to achieve the receive sensitivity requirement by placing the LNAs as close as possible to the antenna subarrays, minimizing the losses that occur infront of the amplifiers. The additional driver amplifier further minimizes system G/T sensitivity to losses that follow the antenna.

2. SLOT ARRAY

The slot array consists of fourteen linear subarrays s] acced () $648\lambda_0$ apart. Each line at series fed-type sub array consists of eight slot elements transversely, electromagnetically coupled to a shielded microstrip line as shown in Figure 1 [2]. Each subarray was designed using transmission line theory with each slot modeled as a series impedance. Characterization of the slot elements as a function of offset was performed both theoretically and experimentally. Amplitude distribution along the array and the main beam direction are a function of the element offsets and interelement spacing, respectively. In addition, the individual slot lengths vary along the array due to the fact that the slot resonant frequency is a function of offset. While vertical shorting pins placed between the slotted plane and the shielding ground plane were necessary to sup

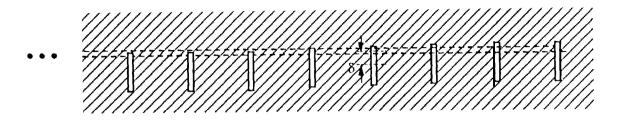


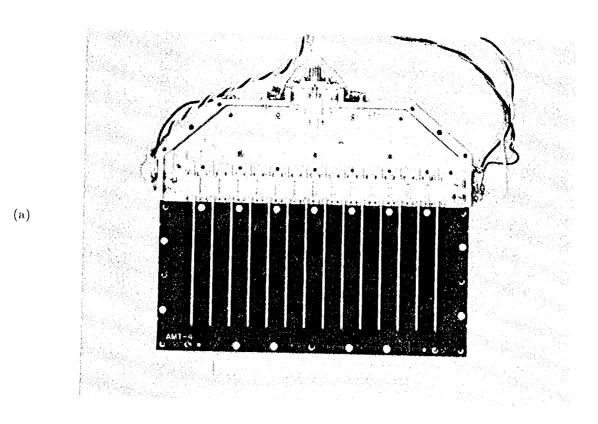
Figure 1, Linear slot subarray.

press undesired wave propagation I for a single linear subarray [2], for the 14-columnarray, little difference was seen in measured patterns and gain with and without the shorting pins. The directivity of the array is approximately 22.3 dB and the insertion loss was measured to be approximately 0.5 1.0 dB.

3. MMIC MODULE

To provide a low-cost proof-of-concept active] nodule for commercial application is, the active array development effort incorporated commercial N4k41 Cs 1 lot ised in off-the-shelf microwave device packages. To exceed the minimum G/T specification of -8 dB/°K, the LNA submodules required ≤ 4.0 dB noise figures and ≥17.5 dB gain. Each 1,NA submodule consists of two TRW A1,011] 02C MMIC LNAshoused in a standard package from StratEdge Corporation and mounted on a subcarrier. LNAs with a low noise figure (< 3.3 dB) were selected to be in 1 the first stage of the package and t hose with higher gain (> 9 dB) were selected to be in the second stage. The submodules exhibited an average noise figure of 3.9 dB and an average gain of 18 dB.

The MMIC receive module, consisting of 14 LN A submodules, a novel 4-way Wilkinson power divider [3], and a driver LNA submodule at the output, was tested and found to have approximately 1-9.8 dB gain through each of the 14 Paths, with a maximum gain variation of ±1.0 dB and amaximum Phase variation of ±11°.


4. EXPERIMENTAL RESULTS

A prototype active antenna, shown in Figure 2, is modular in design, where each of the components, the

array, the LNA submodules, and the power divider, are amounted onto a single base plate by screws for testability and reworkability. An attractive feature of the antenna design is that all circuitry and devices, i.e., the power dividing network, the microstrip lines of each subarray, and the LNAs, are enclosed within the antenna fixture, Radiation from the antenna occurs only through the slot radiating elements, thus minimizing EMC issues. Measured radiation patterns of the active receive array are shown in Figure 3. Measured gain of the active array, measured using a standard gainhorn (approximately 24 dB at 19.914 GHz), is shown in Figure 4, And finally, experimental results indicate that G/T at the beam peak is approximately -6,4 dB/°K.

5. REFERENCES

- 1. A. C. D ensmore and V. Janmejad, "A satellite-tracking K- and K_a band mobile vehicle antenna system," *IEEE Trans. Vehicular Tech.*, Vol. 42, No. 4, pp. :,02-!,13, November 1993.
- 2. A. N. Tulintseff, "Series fed-type linear arrays of dipole and slot elements transversely coupled to a microstrip line," *IEEE 1993 A P-S Symposium Digest*, Vol. 1, pp.128-131, Ann Arbor, Michigan, June 2-July 3, 1993.
- 3. D. Antsos, R. Crist, and L. Sukamto, "A novel Wilkinson power divider with predictable performance at K and K_a -band," *IEEE 1994 MTT Symposium Digest*, San Diego, CA, May 24-27, 1994.

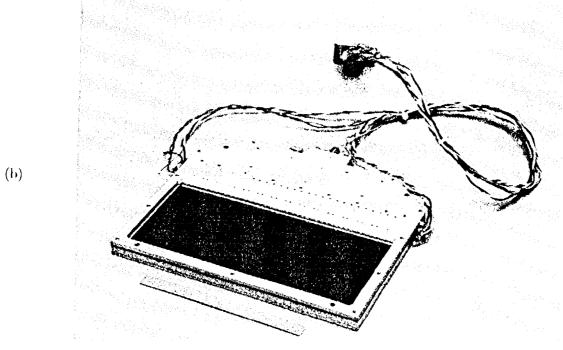
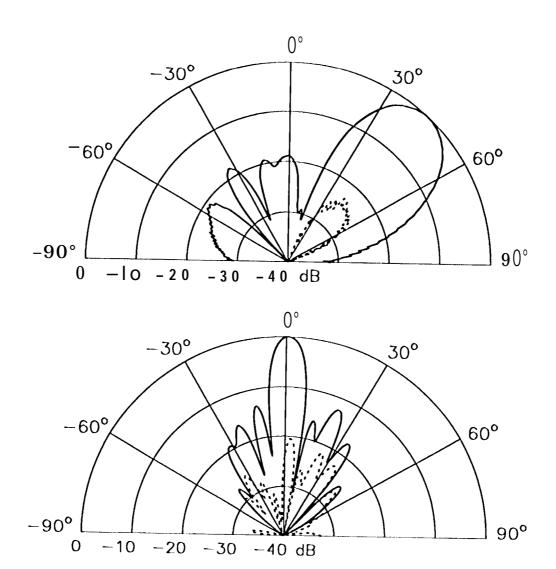
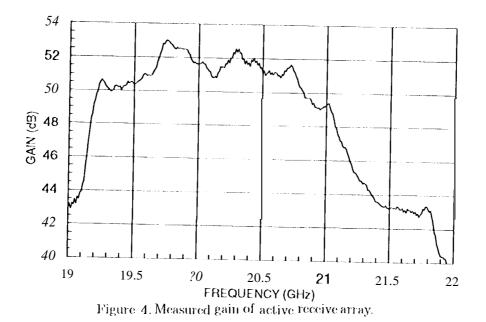




Figure 2. Active receive array. (a) Open view without back plate. (b) Complete assembly.

ACTIVE- SLOT-14AB-NP-19.91 Figure 3. Measured radiation patterns at 19.91 GHz. Elevation and azimuth cuts.

